1. Solución

El producto cartesiano de A x B está conformado por las siguientes parejas o pares ordenados:

A x B = {(2, 1), (2, 4), (2, 5), (3, 1), (3, 4), (3, 5)}

Y cada uno de los siguientes conjuntos corresponde a relaciones definidas de A en B:

R1 =  {(2, 1), (3, 1)}

R2 =  {(2, 4), (2, 5), (3, 4), (3, 5)}

R3 =  {(2, 4), (3, 5)}

La relación R1 se puede definir como el conjunto de pares cuyo segundo elemento es 1, esto es, R1 =  {(x, y) / y = 1}.

La relación R2 está formada por los pares cuyo primer componente es menor que el segundo componente, R2 = {(x, y) / x < y}

Y la relación R3 está conformada por todos los pares que cumplen con que el segundo componente es dos unidades mayor que el primer componente, dicho de otro modo, R3 =  {(x,  y) / y = x + 2}

Así, se puede continuar enumerando relaciones definidas a partir de A x B. Como se puede ver, la regla que define la relación se puede escribir mediante ecuaciones o desigualdades que relacionan los valores de x e y. Estas reglas son un medio conveniente para ordenar en pares los elementos de los dos conjuntos.

 

2. Solución

El producto cartesiano de C x D está formado por los siguientes pares ordenados

C x D = {(1, 2), (1, 3), (1, 6),  (–3, 2), (–3, 3),  (–3, 6)}

Las parejas ordenadas que satisfacen que la suma de sus componentes sea igual a 3 son:

R =  {(1, 2), (–3, 6)}

Toda relación queda definida si se conoce el conjunto de partida, el conjunto de llegada y la regla mediante la cual se asocian los elementos. En el ejemplo anterior, el conjunto de partida corresponde al conjunto C, el conjunto de llegada es el conjunto D y la expresión  x + y = 3  es la regla que asocia los elementos de los dos conjuntos.

Crea tu propia página web con Webador